Digoxin toxicity after a second COVID-19 vaccination

Side effects can create drug-related complications for some patients

BY ROBERT COLE PUERINGER, MD; ANNIE ARENS, MD; NATHAN M. KUNZLER, MD; ERIN BATDORFF, MD; JON B. COLE, MD; AND TRAVIS D. OLIVES, MD, MPH, MED

Both mRNA SARS-CoV-19 vaccines now being used in the United States require two doses, separated by either 21 days (Pfizer) or 28 days (Moderna). Although there can be side effects after either dose, more have been documented with the second dose, including flu-like symptoms such as headaches, fatigue, myalgias, arthralgias and chills. The vaccine is generally well-tolerated, but the additive effects of insensible volume loss, gastrointestinal symptoms and decreased oral intake may create circumstances ripe for drug-related complications.

In the case we describe, the second dose of an mRNA SARS-CoV-19 vaccine produced a viral-like syndrome resulting in renal insufficiency from anorexia and dehydration. Exacerbated by an ACE inhibitor (lisinopril) and a P-glycoprotein inhibitor (diltiazem), the illness culminated in the development of severe digoxin toxicity with hyperkalemia. Digoxin toxicity was diagnosed by medical toxicologists at the bedside when taking into account the patient’s history, presenting symptoms and visual abnormalities, renal insufficiency, hyperkalemia and slow atrial fibrillation. Hyperkalemia was likely the result of digoxin toxicity, renal insufficiency, lisinopril use and a high-potassium diet.

In the midst of an unprecedented mass vaccination campaign, clinicians must remain vigilant for the development of toxicity among patients on digoxin therapy, especially in patients experiencing influenza-like symptoms after a second dose of mRNA COVID-19 vaccine. This is particularly important in those who are on ACE inhibitors, diuretics or P-glycoprotein inhibitors, many of which are used in combination with digoxin in patients with heart failure or rapid atrial fibrillation.

The case
A 60-year-old man with a past medical history of hypertension and permanent atrial fibrillation came to the Emergency Depart-
Discussion

Digoxin is a cardioactive steroid that is used to increase cardiac contractility in heart failure and slow conduction in rapid atrial fibrillation. It is eliminated primarily unchanged by the kidneys. It inhibits membrane sodium-potassium–adenosine triphosphatase pumps (Na+/K+ ATPase), which decrease membrane potentials, and leads to increased cytosolic sodium and calcium (and increased extracellular potassium). In the myocardium, this causes increased cardiac contractility and automaticity, the latter of which can result in premature beats, escape rhythms and ventricular tachycardia. In the carotid sinus, increased baroreceptor firing boosts vagal tone, which can cause bradycardia, atrioventricular blocks, hypotension or nausea and vomiting. In skeletal muscle this leads to hyperkalemia due to the sheer number of Na+/K+ ATPase pumps.

Acute toxicity manifests as nonspecific GI symptoms, neurologic symptoms (somnolence or lethargy, visual disturbances), hyperkalemia and variable bradydysrhythmias or tachydysrhythmias. Chronic toxicity has a more insidious onset and a higher mortality and is marked by variable serum potassium levels with tachydysrhythmias and other neurologic manifestations. Nearly any cardiac dysrhythmia or conduction block can be seen in toxicity, particularly unique rhythms such as slow atrial fibrillation or polymorphic and biventricular tachycardias. Serum digoxin levels, while useful in acute ingestions, often do not correlate with toxicity in chronic ingestions as digoxin has been redistributed from the serum into peripheral tissues.

Treatment relies upon supportive care and the rapid administration of digoxin-specific fragment antigen-binding (Fab) antibodies, the specific antidote for digoxin toxicity. The digoxin-Fab complexes are subsequently cleared renally. Although a number of dosing strategies exist, digoxin-specific Fab antibodies are commonly dosed based upon the patient’s clinical condition and the chronicity of poisoning, with most patients needing only one vial (chronic poisoning) or two vials (acute poisoning) for the chronicity of poisoning, with most patients needing only one vial (chronic poisoning) or two vials (acute poisoning) for adequate reversal of toxic effects. Hyperkalemia due to digoxin toxicity is also best treated with digoxin-specific Fab antibodies.

Acute-on-chronic digoxin toxicity is most frequently precipitated by renal insufficiency, often the result of acute illness, decreased oral intake and volume loss. In addition, drug-drug interactions, particularly with P-glycoprotein inhibitors, diuretics or ACE inhibitors, can lead to decreased clearance of digoxin or hypokalemia (in the case of diuretics), both of which potentiate the development of toxicity. MM

CME credit

You can earn CME credit for reading this article.

To receive CME credit, complete and submit the online evaluation form. https://mnmedinformz.net/survistapro/sn.asp?gpid=CFAFB189-092D-41AD-B6AD-6C02A7994013. Upon successful completion, you will be emailed a certificate of completion within two weeks. You may contact the MMA with questions at cme@mnmed.org. Participants must complete all necessary activity components to be eligible to claim CME credit.

The Minnesota Medical Association (MMA) is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The Minnesota Medical Association designates this activity for a maximum of 25 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

References


